top of page
Colorful Lights _edited.jpg

製造業における外観検査の自動化・無人化

より速く正確に、製品検査を自動化

「外観検査AIソリューション」は、生産ラインにおいて製品に生じた異常を高精度に検出するソリューションです。

製品の外観検査は​、自動車や食品、化粧品などを製造するメーカーにとって重要な業務です。これまで目視や感覚に頼っていた工程を、AIの導入により、多くの検査項目に対し素早く正確な外観検査を実施することが可能となります。NABLAS独自技術ではデータのアノテーションなしに即日活用可能且つ異常の分類も可能です。

visual inspection_main image.webp

外観検査AI導入のハードル

Problem

専門家の画像

専門家が必要

技術的難易度が高く、導入・維持するためには内部に技術者を中心とした体制を作る必要がある

外観検査_5.png

​データの準備が困難

特に不良品のデータが必要だが、なかなかデータを揃えられない

外観検査_6.png

専門家が必要

​導入時の性能を維持するためには継続的なデータ作成とモデルの改良が必要

ソリューションの特徴

Solution Features

外観検査_10.png

1台のカメラで360度×数十枚以上の撮影、立体物の異常も検出

検査対象物を回転させる全方位撮影により

高精度な異常検知を実現

外観検査_8.png

小さな異常・未知の異常も​見逃さない高い検査精度

複数AIの統合機能で​小さい未知の異常も検知

外観検査_7.png

少量の良品データのみでも異常の検出が可能

数枚の正常品画像のみで細かな異常品も

見逃すことなく検出

外観検査_9.png

継続的な自動学習

データを自動収集と連続的な学習により性能を維持。技術者不要、保守コストを削減

外観導入検査のメリット

Merit

iStock-1150818614_edited.jpg

金属製品

打痕 / ヒビ / メッキ不足 / 割れ / 錆 / 汚れ/ 付着物 / バリ など

iStock-182755554_edited.jpg

プラスチック製品

​凹み / 傷 / ヒケ / 黒点 / 変形 など

iStock-1249004040_edited.jpg

​精密部品

断線 / 半田不足 / 端子のカケ / 曲がり / ブリッジ半田 / 実装漏れ など

iStock-587950452_edited.jpg

ゴム製品

凹み / 傷 / 汚れ / 色ムラ など

iStock-1313809905_edited.jpg

​食品

骨などの遺物の混入 / 包装のピンホール / 容器ラベルのズレ / 破れ など

iStock-464643628_edited.jpg

ガラス製品

傷 / 割れ / 汚れ など

主な活用対象

Use cases

外観検査_1.png

省人化・後継者不足の解消

検査の自動化により作業の負担を軽減。​後継者不足・育成問題を解消し、社内リソースを確保

外観検査_2.png

検査品質の安定と向上

ヒューマンエラーをゼロに近づけ、均一的な品質の検査を実現

外観検査_3.png

検査スピードの向上とスケール化

AIによる検査スピードの向上、並列化することで容易にスケール化を実現

​NABLASの外観検査について、より詳しいご説明をご希望の方はぜひお気軽にお問い合わせください。
良品画像をいただければ無償ですぐに簡易PoCを行うことも可能です。

外観検査導入フロー

Related Technologies

各業界の業務課題をAI技術によって解決へ導きます。

bottom of page